Mycotoxins, toxic secondary metabolites produced by certain fungi, pose significant threats to global food safety and public health. These compounds can contaminate a variety of crops, leading to economic losses and health risks to both humans and animals. Traditional lab analysis methods for mycotoxin detection can be time-consuming and may not always be suitable for large-scale screenings.
View Article and Find Full Text PDFToxins (Basel)
February 2024
fungi produce a diverse array of mycotoxic metabolites during the pathogenesis of cereals. Some, such as the trichothecenes and fumonisins, are phytotoxic, acting as non-proteinaceous effectors that facilitate disease development in cereals. Over the last few decades, we have gained some depth of understanding as to how trichothecenes and fumonisins interact with plant cells and how plants deploy mycotoxin detoxification and resistance strategies to defend themselves against the producer fungi.
View Article and Find Full Text PDFThe wheat NAC transcription factor TaNACL-D1 enhances resistance to the economically devastating Fusarium head blight (FHB) disease. The objective of this study was to decipher the alterations in gene expression, pathways and biological processes that led to enhanced resistance as a result of the constitutive expression of TaNACL-D1 in wheat. Transcriptomic analysis was used to determine the genes and processes enhanced in wheat due to TaNACL-D1 overexpression, both in the presence and absence of the causal agent of FHB, (0- and 1-day post-treatment).
View Article and Find Full Text PDFWheat NAC (TaNAC) transcription factors are important regulators of stress responses and developmental processes. This study proposes a new TaNAC nomenclature and identified defense-associated TaNACs based on the analysis of RNA-sequencing datasets of wheat tissue infected with major fungal pathogens. A total of 146 TaNACs were pathogen-responsive, of which 52 were orthologous with functionally characterized defense-associated NACs from barley, rice, and Arabidopsis, as deduced via phylogenetic analysis.
View Article and Find Full Text PDFFusarium head blight (FHB) is a devastating disease encountered by spring-grown barley. Traditionally, synthetic chemicals have been used to control this disease on small grain cereals. A move toward biological control agents as part of sustainable agriculture is pertinent due to the evolutionary mechanisms employed by fungal diseases to circumvent current protection strategies.
View Article and Find Full Text PDFBackground: Chitosan has shown potential for the control of Fusarium head blight (FHB) disease caused by Fusarium graminearum. The objective of this study was to compare the effect of chitosan hydrochloride applied pre- or post-fungal inoculation on FHB and to better understand its' mode of action via an untargeted metabolomics study.
Results: Chitosan inhibited fungal growth in vitro and, when sprayed on the susceptible wheat cultivar Remus 24 hours pre-inoculation with F.
Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv.
View Article and Find Full Text PDFThere is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum.
View Article and Find Full Text PDFBackground: Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp.
View Article and Find Full Text PDFDuring plant-pathogen interactions, pathogens secrete many rapidly evolving, small secreted proteins (SSPs) that can modify plant defense and permit pathogens to colonize plant tissue. The fungal pathogen is the causal agent of Septoria tritici blotch (STB), one of the most important foliar diseases of wheat, globally. is a strictly apoplastic pathogen that can secrete numerous proteins into the apoplast of wheat leaves to promote infection.
View Article and Find Full Text PDFUnderstanding the nuances of host/pathogen interactions are paramount if we wish to effectively control cereal diseases. In the case of the wheat/ interaction that leads to Septoria tritici blotch (STB) disease, a 10,000-year-old conflict has led to considerable armaments being developed on both sides which are not reflected in conventional model systems. Taxonomically restricted genes (TRGs) have evolved in wheat to better allow it to cope with stress caused by fungal pathogens, and has evolved specialized effectors which allow it to manipulate its' host.
View Article and Find Full Text PDFDeoxynivalenol (DON) is a mycotoxin produced by phytopathogenic Fusarium fungi in cereal grain and plays a role as a disease virulence factor. TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhances wheat resistance to DON and it interacts with a sucrose non-fermenting-1 (SNF1)-related protein kinase 1 catalytic subunit α (SnRK1α). This protein kinase family is central integrator of stress and energy signalling, regulating plant metabolism and growth.
View Article and Find Full Text PDFThe ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E.
View Article and Find Full Text PDFThe serine protease inhibitor (serpin) gene family is the largest family of protease inhibitors. Serine protease inhibitors have an active, but under-characterized, role in grain development and defense against pathogen attack in cereal crops. By exploiting publicly available genomic, transcriptomic and proteomic data for wheat (), we have identified and annotated the entire 'serpinome' of wheat and constructed a high-quality and robust phylogenetic tree of the gene family, identifying paralogous and homeologous clades from the hexaploid wheat genome, including the Serpin-Z group that have been well characterized in barley.
View Article and Find Full Text PDFis a leading microbial agent in the emerging consolidated bioprocessing (CBP) industry owing to its capability to infiltrate the plant's lignin barrier and degrade complex carbohydrates to value-added chemicals such as bioethanol in a single step. Membrane transport of nutrients is a key factor in successful microbial colonization of host tissue. This study assessed the impact of a peptide transporter on ability to convert lignocellulosic straw to ethanol.
View Article and Find Full Text PDFTaxonomically-restricted orphan genes play an important role in environmental adaptation, as recently demonstrated by the fact that the Pooideae-specific orphan TaFROG (Triticum aestivum Fusarium Resistance Orphan Gene) enhanced wheat resistance to the economically devastating Fusarium head blight (FHB) disease. Like most orphan genes, little is known about the cellular function of the encoded protein TaFROG, other than it interacts with the central stress regulator TaSnRK1α. Here, we functionally characterized a wheat (T.
View Article and Find Full Text PDFWith the recent advances in sequencing technologies, many studies are generating lists of candidate genes associated with specific traits. The major bottleneck in functional genomics is the validation of gene function. This is achieved by analyzing the effect of either gene silencing or overexpression on a specific phenotypic or biochemical trait.
View Article and Find Full Text PDFThe mycotoxin deoxynivalenol (DON) serves as a plant disease virulence factor for the fungi Fusarium graminearum and F. culmorum during the development of Fusarium head blight (FHB) disease on wheat. A wheat cytochrome P450 gene from the subfamily CYP72A, TaCYP72A, was cloned from wheat cultivar CM82036.
View Article and Find Full Text PDFReceptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H () and wheat chromosome 6DL (), which encode the characteristic domains of surface-localized receptor like kinases.
View Article and Find Full Text PDFThe development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, (wall barley).
View Article and Find Full Text PDFOV14, a soil borne alpha-proteobacteria of the Rhizobiaceae family, fortifies the novel plant transformation technology platform termed '-mediated transformation' (EMT). EMT can stably transform both monocot and dicot species, and the host range of EMT is continuously expanding across a diverse range of crop species. In this protocol, we adapted a previously published account that describes the use of roots to investigate the interaction of and .
View Article and Find Full Text PDFMicrobial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. The most important challenge is to overcome substrate recalcitrance and to thus reduce the number of steps needed to biorefine lignocellulose. Conventionally, conversion involves chemical pretreatment of lignocellulose, followed by hydrolysis of biomass to monomer sugars that are subsequently fermented into bioethanol.
View Article and Find Full Text PDFAll genomes encode taxonomically restricted orphan genes, and the vast majority are of unknown function. There is growing evidence that such genes play an important role in the environmental adaptation of taxa. We report the functional characterization of an orphan gene (Triticum aestivum Fusarium Resistance Orphan Gene [TaFROG]) as a component of resistance to the globally important wheat (T.
View Article and Find Full Text PDFEndophytes associated with crops have potential as beneficial inoculants in agriculture, but little is known about their genetic diversity and phylogenetic relationships. We carried out the first ever ecological and phylogenetic survey of the culturable fungal root endophytes of a wild barley species. Fungal root endophytes were isolated from 10 populations of wall barley (), and 112 taxa of fungi were identified based on internal transcribed spacer sequence similarity.
View Article and Find Full Text PDF