Publications by authors named "FG Mariam"

A new high energy proton radiography facility PRIOR-II (Proton Microscope for FAIR) has been designed, constructed, and successfully commissioned at the GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany) pushing the technical boundaries of charged particle radiography with normal conducting magnets to the limits. The setup is foreseen to become a new and powerful user facility for carrying out fundamental science experiments in the fields of plasma and shock wave physics, material science, and medical physics. It will help address several unsolved scientific challenges, which require high-speed and precise non-invasive diagnostic methods capable of probing matter with up to 100 g/cm2 areal density.

View Article and Find Full Text PDF

Protons from the Los Alamos Neutron Science Center have been used for pulsed radiography in dynamic experiments for the past 25 years. Pulses of protons are imaged on a scintillator, and the light from these images is captured by fast gated cameras. The need for fast, bright scintillators has led to some compromises in image quality due to tiling the scintillators and backgrounds with totally internally reflected light.

View Article and Find Full Text PDF

Proton radiography may guide proton therapy cancer treatments with beam's-eye-view anatomical images and a proton-based estimation of proton stopping power. However, without contrast enhancement, proton radiography will not be able to distinguish tumor from tissue. To provide this contrast, functionalized, high- nanoparticles that specifically target a tumor could be injected into a patient before imaging.

View Article and Find Full Text PDF

Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.

View Article and Find Full Text PDF

Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy.

View Article and Find Full Text PDF

We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone.

View Article and Find Full Text PDF

New applications of charged particle radiography have been developed over the past two decades that extend the range of radiographic techniques providing high-speed sequences of radiographs of thicker objects with higher effective dose than can be obtained with conventional radiographic techniques. In this paper, we review the motivation and the development of flash radiography and in particular, charged particle radiography.

View Article and Find Full Text PDF

We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. We also show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods have been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility.

View Article and Find Full Text PDF

This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution.

View Article and Find Full Text PDF