The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK.
View Article and Find Full Text PDFMaterial-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system.
View Article and Find Full Text PDFWe describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T.
View Article and Find Full Text PDFThe spectral density S(Φ)(f) = A(2)/(f/1 Hz)(α) of magnetic flux noise in ten dc superconducting quantum interference devices (SQUIDs) with systematically varied geometries shows that α increases as the temperature is lowered; in so doing, each spectrum pivots about a nearly constant frequency. The mean-square flux noise, inferred by integrating the power spectra, grows rapidly with temperature and at a given temperature is approximately independent of the outer dimension of a given SQUID. These results are incompatible with a model based on the random reversal of independent, surface spins.
View Article and Find Full Text PDFWe present results on a circuit QED experiment in which a separate transmission line is used to address a quasilumped element superconducting microwave resonator which is in turn coupled to an Al/AlO(x)/Al Cooper-pair box charge qubit. With our device, we find a strong correlation between the lifetime of the qubit and the inverse of the coupling between the qubit and the transmission line. At the smallest coupling we measured, the lifetime of the Cooper-pair box was T₁=200 μs, which represents more than a twentyfold improvement in the lifetime of the Cooper-pair box compared with previous results.
View Article and Find Full Text PDFPrototype Josephson-junction based qubit coherence times are too short for quantum computing. Recent experiments probing superconducting phase qubits have revealed previously unseen fine splittings in the transition energy spectra. These splittings have been attributed to new microscopic degrees of freedom (microresonators), a previously unknown source of decoherence.
View Article and Find Full Text PDFWe study the quantum mechanical behavior of a macroscopic, three-body, superconducting circuit. Microwave spectroscopy on our system, a resonator coupling two large Josephson junctions, produced complex energy spectra well explained by quantum theory over a large frequency range. By tuning each junction separately into resonance with the resonator, we first observe strong coupling between each junction and the resonator.
View Article and Find Full Text PDFBased on a quantum analysis of two capacitively coupled current-biased Josephson junctions, we propose two fundamental two-qubit quantum logic gates. Each of these gates, when supplemented by single-qubit operations, is sufficient for universal quantum computation. Numerical solutions of the time-dependent Schrödinger equation demonstrate that these operations can be performed with good fidelity.
View Article and Find Full Text PDFWe present spectroscopic evidence for the creation of entangled macroscopic quantum states in two current-biased Josephson-junction qubits coupled by a capacitor. The individual junction bias currents are used to control the interaction between the qubits by tuning the energy level spacings of the junctions in and out of resonance with each other. Microwave spectroscopy in the 4 to 6 gigahertzrange at 20 millikelvin reveals energy levels that agree well with theoretical results for entangled states.
View Article and Find Full Text PDFExploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy.
View Article and Find Full Text PDFPhys Rev B Condens Matter
December 1990
Phys Rev B Condens Matter
February 1990