Publications by authors named "F de Bernardis"

The genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized genes in and , by the generation and characterization of C and single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae.

View Article and Find Full Text PDF

The ability of yeast to adhere to biotic and abiotic surfaces represents an essential trait during the early stages of infection. Agglutinin-like sequence (Als) cell-wall proteins play a key role in adhesion of Candida species. Candida parapsilosis genome encompasses 5 ALS members, of which only the role of CPAR2_404800 has been elucidated.

View Article and Find Full Text PDF

Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the "curse of dimensionality" in high dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero.

View Article and Find Full Text PDF

Vulvovaginal candidiasis is a common mucosal infection affecting a large proportion of women with some of them affected by recurrent often intractable forms of the disease. Thus, there is an increasing interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in animal models of vaginal candidiasis, the components of the host-fungus interaction at the mucosal level.

View Article and Find Full Text PDF

Aspergillus species are the cause of invasive mold infections in immunocompromised patients: Aspergillus fumigatus, A. flavus and A. terreus account for most cases of invasive aspergillosis (IA).

View Article and Find Full Text PDF