Publications by authors named "F de Andres"

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.

View Article and Find Full Text PDF
Article Synopsis
  • Research highlights the importance of studying pharmacogenetic variability in drug responses, especially in diverse populations like those from the Dominican Republic.
  • The study analyzed 197 healthy volunteers' genetic ancestry and found unique CYP allele frequencies that reflect a mix of European, Native American, and African ancestries, with implications for drug metabolism.
  • Findings suggest the need for ethnicity-aware pharmacogenetic guidelines to ensure personalized medicine is accessible and effective for all populations.
View Article and Find Full Text PDF

Adenoviruses (Ads) are potent gene delivery vectors for and applications. However, current methods for their construction are time-consuming and inefficient, limiting their rapid production and utility in generating complex genetic libraries. Here, we introduce FastAd, a rapid and easy-to-use technology for inserting recombinant "donor" DNA directly into infectious "receiver" Ads in mammalian cells by the concerted action of two efficient recombinases: Cre and Bxb1.

View Article and Find Full Text PDF

The tropism of adenoviruses (Ads) is significantly influenced by the binding of various blood factors. To investigate differences in their binding, we conducted cryo-EM analysis on complexes of several human adenoviruses with human platelet factor-4 (PF4), coagulation factors FII (Prothrombin), and FX. While we observed EM densities for FII and FX bound to all the species-C adenoviruses examined, no densities were seen for PF4, even though PF4 can co-pellet with various Ads.

View Article and Find Full Text PDF

In Mexico, 75% of diabetes mellitus type 2 (DMT2) patients are not in glycaemic control criteria (HbA1c<7%); this entails a significantly variable drug response. Amongst the factors influencing such variability, are genetics, more specifically, single nucleotide polymorphisms (SNPs). Three genes implied in metformin pharmacokinetics are , , and , which are polymorphic.

View Article and Find Full Text PDF