Publications by authors named "F Zobairi"

Article Synopsis
  • - Pathological tissues produce various substances, including extracellular vesicles (EVs) from active or dying cells.
  • - EVs found in diseased heart valves may play a significant role in the development of valve thrombosis.
  • - In cases of human aortic stenosis, EVs can activate valvular endothelial cells, causing dysfunction and increasing the chances of blood clotting.
View Article and Find Full Text PDF

Background: Ischemia-driven islet isolation procedure is one of the limiting causes of pancreatic islet transplantation. Ischemia-reperfusion process is associated with endothelium dysfunction and the release of pro-senescent microvesicles. We investigated whether pro-senescent endothelial microvesicles prompt islet senescence and dysfunction in vitro.

View Article and Find Full Text PDF

Endothelial senescence is an emerging cause of vascular dysfunction. Because microparticles are effectors of endothelial inflammation and vascular injury after ischaemia-reperfusion, we examined leucocyte-derived microparticles of spleen origin as possible contributors. Microparticles were generated from primary rat splenocytes by either lipopolysaccharide or phorbol-myristate-acetate/calcium ionophore, under conditions mimicking innate and adaptive immune responses.

View Article and Find Full Text PDF

Background: Ageing is associated with progressive endothelial senescence and dysfunction, and cardiovascular risk. Circulating endothelial microvesicles (MVs) are pro-senescent and pro-inflammatory endothelial effectors in acute coronary syndrome. Omega-3 PUFA intake was claimed beneficial in cardiovascular prevention.

View Article and Find Full Text PDF

Background: Septic shock-induced disseminated intravascular coagulation is responsible for increased occurrence of multiple organ dysfunction and mortality. Immunothrombosis-induced coagulopathy may contribute to hypercoagulability. We aimed at determining whether recombinant human thrombomodulin (rhTM) could control exaggerated immunothrombosis by studying procoagulant responses, fibrinolysis activity borne by microvesicles (MVs) and NETosis in septic shock.

View Article and Find Full Text PDF