Liquid crystalline (LC) materials are especially suited for the preparation of active three-dimensional (3D) and 4D microstructures using two-photon laser printing. To achieve the desired actuation, the alignment of the LCs has to be controlled during the printing process. In most cases studied before, the alignment relied on surface modifications and complex alignment patterns and concomitant actuation were not possible.
View Article and Find Full Text PDFFilamentous viruses like influenza and torovirus often display systematic bends and arcs of mysterious physical origin. We propose that such viruses undergo an instability from a cylindrically symmetric to a toroidally curved state. This "toro-elastic" state emerges spontaneous symmetry breaking under prestress due to short range spike protein interactions magnified by surface topography.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Gliding motility proceeds with little changes in cell shape and often results from actively driven surface flows of adhesins binding to the extracellular environment. It allows for fast movement over surfaces or through tissue, especially for the eukaryotic parasites from the phylum apicomplexa, which includes the causative agents of the widespread diseases malaria and toxoplasmosis. We have developed a fully three-dimensional active particle theory which connects the self-organized, actively driven surface flow over a fixed cell shape to the resulting global motility patterns.
View Article and Find Full Text PDFThe nucleus of eukaryotic cells typically makes up around 30% of the cell volume and has significantly different mechanics, which can make it effectively up to ten times stiffer than the surrounding cytoplasm. Therefore it is an important element for cell mechanics, but a quantitative understanding of its mechanical role during whole cell dynamics is largely missing. Here we demonstrate that elastic phase fields can be used to describe dynamical cell processes in adhesive or confining environments in which the nucleus acts as a stiff inclusion in an elastic cytoplasm.
View Article and Find Full Text PDFTissue dynamics and collective cell motion are crucial biological processes. Their biological machinery is mostly known, and simulation models such as the active vertex model exist and yield reasonable agreement with experimental observations such as tissue fluidization or fingering. However, a good and well-founded continuum description for tissues remains to be developed.
View Article and Find Full Text PDF