Publications by authors named "F Y Ogrin"

Herringbone micromixers are a powerful tool for introducing advection into microfluidic systems. While these mixers are typically used for mixing fluids faster than the rate of diffusion, there has been recent interest in using the device to enhance interactions between suspended particles and channel walls. We show how the common approximations applied to herringbone micromixer theory can have a significant impact on results.

View Article and Find Full Text PDF

Integrating miniature pumps within microfluidic devices is crucial for advancing point-of-care diagnostics. Understanding the emergence of flow from novel integrated pumping systems is the first step in their successful implementation. A Purcell-like elasto-magnetic integrated microfluidic pump has been simulated in COMSOL Multiphysics and its performance has been investigated and evaluated.

View Article and Find Full Text PDF

Correction for 'Microfluidic devices powered by integrated elasto-magnetic pumps' by Jacob L. Binsley et al., Lab Chip, 2020, 20, 4285-4295, DOI: .

View Article and Find Full Text PDF

Nanoscopic lamellae of centrosymmetric ferromagnetic alloys have recently been reported to host the biskyrmion spin texture; however, this has been disputed as the misidentication of topologically trivial type-II magnetic bubbles. Here we demonstrate resonant soft X-ray holographic imaging of topological magnetic states in lamellae of the centrosymmetric alloy (MnNi)Ga ( = 0.5), showing the presence of magnetic stripes evolving into single core magnetic bubbles.

View Article and Find Full Text PDF

We show how an asymmetric elasto-magnetic system provides a novel integrated pumping solution for lab-on-a-chip and point of care devices. This monolithic pumping solution, inspired by Purcell's 3-link swimmer, is integrated within a simple microfluidic device, bypassing the requirement of external connections. We experimentally prove that this system can provide tuneable fluid flow with a flow rate of up to 600 μL h-1.

View Article and Find Full Text PDF