Artificial intelligence techniques offer promising avenues for exploring human body features from videos, yet no freely accessible tool has reliably provided holistic and fine-grained behavioral analyses to date. To address this, we developed a machine learning tool based on a two-level approach: a first lower-level processing using computer vision for extracting fine-grained and comprehensive behavioral features such as skeleton or facial points, gaze, and action units; a second level of machine learning classification coupled with explainability providing modularity, to determine which behavioral features are triggered by specific environments. To validate our tool, we filmed 16 participants across six conditions, varying according to the presence of a person ("Pers"), a sound ("Snd"), or silence ("Rest"), and according to emotional levels using self-referential ("Self") and control ("Ctrl") stimuli.
View Article and Find Full Text PDFWhen reproducing sounds over headphones, the simulated source can be externalized (i.e., perceived outside the head) or internalized (i.
View Article and Find Full Text PDFThe recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls.
View Article and Find Full Text PDFSpinal cord injury results in significant sensorimotor deficits, currently, there is no curative treatment for the symptoms induced by spinal cord injury. Basic and pre-clinical research on spinal cord injury relies on the development and characterization of appropriate animal models. These models should replicate the symptoms observed in human, allowing for the exploration of functional deficits and investigation into various aspects of physiopathology of spinal cord injury.
View Article and Find Full Text PDF