Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis.
View Article and Find Full Text PDFThe fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation.
View Article and Find Full Text PDFHibernation, a period where bats have suppressed immunity and low body temperatures, provides the psychrophilic fungus Pseudogymnoascus destructans the opportunity to colonise bat skin, leading to severe disease in susceptible species. Innate immunity, which requires less energy and may remain more active during torpor, can control infections with local inflammation in some bat species that are resistant to infection. If infection is not controlled before emergence from hibernation, ineffective adaptive immune mechanisms are activated, including incomplete Th1, ineffective Th2, and variable Th17 responses.
View Article and Find Full Text PDF