Publications by authors named "F Wemheuer"

Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has increased during the last years, the vast majority of marine diversity are rather unexplored. Moreover, most studies focused on the entire microbial community and thus do not assess the active fraction of the microbial community.

View Article and Find Full Text PDF

Coastal systems such as estuaries are threatened by multiple anthropogenic stressors worldwide. However, how these stressors and estuarine hydrology shape benthic bacterial communities and their functions remains poorly known. Here, we surveyed sediment bacterial communities in poorly flushed embayments and well flushed channels in Sydney Harbour, Australia, using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Intercropping of legumes and cereals provides many ecological advantages and contributes to a sustainable agriculture. These agricultural systems face ongoing shifts in precipitation patterns and seasonal drought. Although the effect of drought stress on legumes has been frequently studied, knowledge about water deficits influencing legumes under different cropping systems is still limited.

View Article and Find Full Text PDF

Widespread wastewater pollution is one of the greatest challenges threatening the sustainable management of rivers globally. Understanding microbial responses to gradients in environmental stressors, such as wastewater pollution, is crucial to identify thresholds of community change and to develop management strategies that protect ecosystem integrity. This study used multiple lines of empirical evidence, including a novel combination of microbial ecotoxicology methods in the laboratory and field to link pressure-stressor-response relationships.

View Article and Find Full Text PDF

Background: Sequencing of 16S rRNA genes has become a powerful technique to study microbial communities and their responses towards changing environmental conditions in various ecosystems. Several tools have been developed for the prediction of functional profiles from 16S rRNA gene sequencing data, because numerous questions in ecosystem ecology require knowledge of community functions in addition to taxonomic composition. However, the accuracy of these tools relies on functional information derived from genomes available in public databases, which are often not representative of the microorganisms present in the studied ecosystem.

View Article and Find Full Text PDF