Monocyclic π-aromatic compounds are ubiquitous throughout almost all fields of natural sciences-as synthons in industrial processes, as ligands of metal complexes for catalysis or sensing and as bioactive molecules. Planar organocycles stand out through their specific way of overcoming electron deficiency by a non-localizable set of (4n + 2)π electrons. By contrast, all-metal aromatic monocycles are still rare, as metal atoms prefer to form clusters with multiply bonded atoms instead.
View Article and Find Full Text PDFWe present WearMoCap, an open-source library to track the human pose from smartwatch sensor data and leveraging pose predictions for ubiquitous robot control. WearMoCap operates in three modes: 1) a Watch Only mode, which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes the smartphone strapped onto the upper arm and 3) a Pocket mode, which determines body orientation from a smartphone in any pocket. We evaluate all modes on large-scale datasets consisting of recordings from up to 8 human subjects using a range of consumer-grade devices.
View Article and Find Full Text PDFIon mobility spectrometry (IMS) (also including IMS-IMS measurements) as well as DFT calculations have been used to study isomer distributions and isomer interconversion in a range of electrospray-generated lanthanide chloride cluster anions, LnCl (where = 1-6, and Ln corresponds to the 15 lanthanide elements (except for radioactive Pm)). Where measurement and structural rearrangement timescales allow, we obtain almost quantitative agreement between experiment and theory thus confirming isomer predictions and reproducing isomer intensity ratios. LnCl structures reflect strong ionic bonding with limited directionality.
View Article and Find Full Text PDFThe reactivity of Bi clusters ( = 2 to 30) with O is found to display even-odd alternations. The open-shell even-sized Bi clusters are more reactive than the closed-shell odd-sized clusters, except Bi, which exhibits no observable reactivity toward O. We have investigated the structure and bonding of Bi to understand its remarkable resistance to oxidation.
View Article and Find Full Text PDFMolecules based on polyatomic bismuth substructures are currently attracting a lot of attention owing to this heavy and essentially non-toxic element's uncommon chemical and physical properties, which include unprecedented bonding properties. Hexaatomic {Bi} substructures that underly more complex cluster structures were recently reported to adopt different structures or exhibit different structural details as a consequence of the charge of the {Bi} unit. This leads to either crown-shaped cycles for a nominal Bi or differently distorted trigonal prisms for compositions close to Bi .
View Article and Find Full Text PDF