In humans and plants, N-terminal acetylation plays a central role in protein homeostasis, affects 80% of proteins in the cytoplasm and is catalyzed by five ribosome-associated N-acetyltransferases (NatA-E). Humans also possess a Golgi-associated NatF (HsNAA60) that is essential for Golgi integrity. Remarkably, NAA60 is absent in fungi and has not been identified in plants.
View Article and Find Full Text PDFEndotoxins are cell wall components of Gram-negative bacteria. A release of endotoxins into the human blood stream results in an inflammation reaction that can lead to life-threatening conditions like sepsis. Therefore, control for endotoxin contamination of intravenously administered drugs is crucial.
View Article and Find Full Text PDFInspired by the huge droplets attached on cypress tree leaf tips after rain, we find that a bent fibre can hold significantly more water in the corner than a horizontally placed fibre (typically up to three times or more). The maximum volume of the liquid that can be trapped is remarkably affected by the bending angle of the fibre and surface tension of the liquid. We experimentally find the optimal included angle (∼36°) that holds the most water.
View Article and Find Full Text PDFLately, curious structures have been erected in arid regions: they are large nets able to catch water from fog. Tiny droplets condense on the mesh and are collected on the bottom of it. This innovative technology is crucial to obtain drinkable water in these inhospitable areas.
View Article and Find Full Text PDFIn eukaryotes, N-terminal acetylation is one of the most common protein modifications involved in a wide range of biological processes. Most N-acetyltransferase complexes (NATs) act co-translationally, with the heterodimeric NatA complex modifying the majority of substrate proteins. Here we show that the Huntingtin yeast two-hybrid protein K (HypK) binds tightly to the NatA complex comprising the auxiliary subunit Naa15 and the catalytic subunit Naa10.
View Article and Find Full Text PDF