Publications by authors named "F W Muregi"

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a growing problem globally especially in Sub-Saharan Africa including Kenya. Without any intervention, lower/middle-income countries (LMICs) will be most affected due to already higher AMR levels compared with higher income countries and due to the far higher burden of diseases in the LMICs. Studies have consistently shown that inappropriate use of antimicrobials is the major driver of AMR.

View Article and Find Full Text PDF

Background: The efficacy and safety of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) against asexual parasites population has been documented. However, the effect of these anti-malarials on sexual parasites is still less clear. Gametocyte clearance following treatment is essential for malaria control and elimination efforts; therefore, the study sought to determine trends in gametocyte clearance after AL or DP treatment in children from a malaria-endemic site in Kenya.

View Article and Find Full Text PDF

Malaria is the eighth highest contributor to global disease burden with 212 million cases and 429,000 deaths reported in 2015. There is an urgent need to develop multiple target drug to curb growing resistance by due to use of single target drugs and lack of vaccines. Based on a previous study, 3-chloro-4-(4-chlorophenoxy) aniline (ANI) inhibits enoyl acyl carrier protein reductase.

View Article and Find Full Text PDF

We report the rapid detection (20 min) of Streptococcus agalactiae, Group B Streptococcus (GBS) employing on-chip magnetic isolation of GBS based on immiscible filtration assisted by surface tension (IFAST), followed by detection of the isolated GBS using an adenosine triphosphate (ATP) bioluminescence assay. Up to 80% GBS cells were isolated from spiked artificial urine samples with linear responses of bioluminescence signals from isolated cells at 2.3 × 102-9.

View Article and Find Full Text PDF