Geckos are a large group of lizards characterized by a rich variety of species, different modes of sex determination and diverse karyotypes. In spite of many unresolved questions on lizards' phylogeny and taxonomy, the karyotypes of most geckos have been studied by conventional cytogenetic methods only. We used flow-sorted chromosome-specific painting probes of Japanese gecko (Gekko japonicus), Mediterranean house gecko (Hemidactylus turcicus) and flat-tailed house gecko (Hemidactylus platyurus) to reveal homologous regions and to study karyotype evolution in seven gecko species (Gekko gecko, G.
View Article and Find Full Text PDFX chromosome dosage compensation in female eutherian mammals is regulated by the noncoding Xist RNA and is associated with the differential acquisition of active and repressive histone modifications, resulting in repression of most genes on one of the two X chromosome homologs. Marsupial mammals exhibit dosage compensation; however, they lack Xist, and the mechanisms conferring epigenetic control of X chromosome dosage compensation remain elusive. Oviparous mammals, the monotremes, have multiple X chromosomes, and it is not clear whether they undergo dosage compensation and whether there is epigenetic dimorphism between homologous pairs in female monotremes.
View Article and Find Full Text PDFSkinks represent the most diversified squamate reptiles with a great variation in body size and form, and are found worldwide in a variety of habitats. Their remarkable diversification has been accompanied by only a few chromosome rearrangements, resulting in highly-conservative chromosomal complements of these lizards. In this study cross-species chromosome painting using Scincus scincus (2n = 32) as the source genome, was used to detect the chromosomal rearrangements and homologies between the following skinks: Chalcides chalcides (2n = 28), C.
View Article and Find Full Text PDFX chromosome inactivation in female mammals results in dosage compensation of X-linked gene products between the sexes. In humans there is evidence that a substantial proportion of genes escape from silencing. We have carried out a large-scale analysis of gene expression in lymphoblastoid cell lines from four human populations to determine the extent to which escape from X chromosome inactivation disrupts dosage compensation.
View Article and Find Full Text PDF