Publications by authors named "F Vinnarasi"

This research work aims to implement an automated segmentation process to extract the endoplasmic reticulum (ER) network in fluorescence microscopy images (FMI) using pretrained convolutional neural network (CNN). The threshold level of the raw FMT is complex, and extraction of the ER network is a challenging task. Hence, an image conversion procedure is initially employed to reduce its complexity.

View Article and Find Full Text PDF

Hydrogeochemical and Health Risk Assessments of trace elements are integral to groundwater resource assessment, utilization, and human health. Investigation of groundwater chemistry and trace elemental impact on local inhabitants were attempted in Shanmuganadhi basin, Tamilnadu, India. About 60 groundwater samples were collected during the pre-monsoon period and analyzed for hydrochemical composition, including major and trace elements (Fe, Cr, Ni, Cu Pb, Mn, and As) to isolate chemical characteristics and human health risk assessment.

View Article and Find Full Text PDF

Submarine groundwater discharge and associated trace element fluxes from the Coleroon River estuary to south bay, India, has been attempted, because increasing trace elements could result in harmful algal blooms and eutrophication. Trace elements (Al, Cr, Mn, Fe, Ni, Cu, Zn, Sr, Mo, Ba, Pb, Th, and U) in surface water, pore, and groundwater samples were monitored for 10 days in three locations (A, B, and C) by considering tidal fluctuations. The trace elements Al, Cr, Fe, Ni, Zn, Sr, Mo, Pb, Th, and U were greater and found to be influenced by processes, such as fresh groundwater discharge and seawater intrusion.

View Article and Find Full Text PDF

Chemical weathering in a groundwater basin is a key to understanding global climate change for a long-term scale due to its association with carbon sequestration. The present study aims to characterize and to quantify silicate weathering rate (SWR), carbon dioxide consumption rate and carbonate weathering rate (CWR) in hard rock terrain aided by major ion chemistry. The proposed study area Shanmuganadhi is marked with superior rainfall, oscillating temperature and runoff with litho-units encompassing charnockite and hornblende-biotite gneiss.

View Article and Find Full Text PDF