Publications by authors named "F Vila"

Background: Serology for dengue viruses (DENV) and Zika virus (ZIKV) has been hindered by antibody cross-reactivity, which limits the utility of these tests for surveillance and assessment of sero-status. Our aim was to develop a multiplexed IgG-based assay with increased accuracy to assess the history of previous DENV and ZIKV infections.

Methods: We developed and assessed the analytical performance of a sample-sparing, multiplexed, microsphere-based serological assay using domain III of the envelope protein (EDIII) of DENV serotypes 1-4 and ZIKV, the most variable region between each virus.

View Article and Find Full Text PDF

Aim: Colorectal cancer (CRC) ranks as the second most diagnosed and third most deadly cancer worldwide. Despite advances in early diagnosis and treatment, CRC remains a leading cause of cancer-related deaths. Up to 30% of CRC patients are diagnosed during emergency department visits, leading to surgical procedures that may not adhere to oncological principles due to complications like obstruction, bleeding, or perforation.

View Article and Find Full Text PDF

The differentiation/maturation trajectories of different blood cell types stemming from a CD34 common ancestor takes place in different biologically relevant multidimensional spaces. Here, we generated microRNA and cytokine profiles from highly purified populations of hematopoietic progenitors/precursors derived from cord blood hematopoietic stem/progenitor cells. MicroRNA and cytokine landscapes were then analyzed to find their mutual relationships under the hypothesis that the highly variable miRNome corresponds to the 'force field' driving the goal of a stable phenotype (here corresponding to the cytokine abundance pattern) typical of each cell kind.

View Article and Find Full Text PDF
Article Synopsis
  • The paper reviews the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function approach, highlighting its potential uses and limitations compared to the original time-dependent coupled cluster (TDCC) method.
  • An enhanced double TDCC ansatz is proposed to improve accuracy in expansion limits, while a new cluster-analysis method is introduced to better identify peaks in the spectral function, especially useful for understanding complex many-body effects.
  • Initial tests apply this RT-EOM-CC approach to single impurity Anderson models, allowing for comparisons with other Green's function methods to evaluate effectiveness and accuracy in producing impurity Green's functions.
View Article and Find Full Text PDF

The transformative impact of modern computational paradigms and technologies, such as high-performance computing (HPC), quantum computing, and cloud computing, has opened up profound new opportunities for scientific simulations. Scalable computational chemistry is one beneficiary of this technological progress. The main focus of this paper is on the performance of various quantum chemical formulations, ranging from low-order methods to high-accuracy approaches, implemented in different computational chemistry packages and libraries, such as NWChem, NWChemEx, Scalable Predictive Methods for Excitations and Correlated Phenomena, ExaChem, and Fermi-Löwdin orbital self-interaction correction on Azure Quantum Elements, Microsoft's cloud services platform for scientific discovery.

View Article and Find Full Text PDF