Background: Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.
View Article and Find Full Text PDFEwing sarcoma (ES) is characterized by EWS::FLI1 or EWS::ERG fusion proteins. Knowing that ion channels are involved in tumorigenesis, this work aimed to study the involvement of the KCNN1 gene, which encodes the SK1 potassium channel, in ES development. Bioinformatics analyses from databases were used to study KCNN1 expression in patients and cell lines.
View Article and Find Full Text PDFBackground: Previous studies have shown that neutrophil-to-lymphocyte (NLR) ratio at diagnosis and early lymphocytes recovery on doxorubicin-based chemotherapy, may impact the outcome in patients with osteosarcoma (OST). This study aimed to evaluate the prognostic value of hemogram parameters in patients with OST treated with high-dose methotrexate and etoposide/ifosfamide (M-EI) chemotherapy.
Materials And Methods: We retrospectively analyzed the prognostic value of various hemogram parameters at diagnosis and during therapy in a large consecutive cohort of patients with OST included in the French OS2006 trial and treated with M-EI chemotherapy.
LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors.
View Article and Find Full Text PDFPrecise spatiotemporal regulations of gene expression are essential for determining cells' fates and functions. Enhancers are -acting DNA elements that act as periodic transcriptional thrusters and their activities are cell type specific. Clusters of enhancers, called super-enhancers, are more densely occupied by transcriptional activators than enhancers, driving stronger expression of their target genes, which have prominent roles in establishing and maintaining cellular identities.
View Article and Find Full Text PDF