Significance: The development of imaging systems that are cost-efficient and modular is essential for modern neuroscience research.
Aim: In the current study, we designed, developed, and characterized a low-cost reversible tandem lens mesoscope for brain imaging in rodents.
Approach: Using readily available components, we assembled a robust imaging system that is highly efficient and cost-effective.
Aims: To assess the efficacy of two commercially available viability dyes, 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride (CTC) and 5(6)-carboxyfluorescein diacetate (CFDA), in reporting on viable cell concentration and species using an all-fibre fluorometer.
Methods And Results: Four bacterial species (two Gram-positive and two Gram-negative) commonly associated with food poisoning or food spoilage (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Bacillus cereus) were stained with CTC or CFDA and the fibre fluorometer was used to collect full fluorescence emission spectra. A good correlation between concentration and fluorescence intensity was found for Gram-negative bacteria between 107 and 108 colony-forming units (CFU) ml-1.
With the global increase in food exchange, rapid identification and enumeration of bacteria has become crucial for protecting consumers from bacterial contamination. Efficient analysis requires the separation of target particles (e.g.
View Article and Find Full Text PDFObjective: To explore the ability of polarisation-sensitive optical coherence tomography (PS-OCT) to rapidly identify subtle signs of tissue degeneration in the equine joint.
Method: Polarisation-sensitive optical coherence tomography (PS-OCT) images were systematically acquired in four locations along the medial and lateral condyles of the third metacarpal bone in five dissected equine specimens. Intensity and retardation PS-OCT images, and anomalies observed therein, were then compared and validated with high resolution images of the tissue sections obtained using Differential Interference contrast (DIC) optical light microscopy.
Standard rheometers assess mechanical properties of viscoelastic samples up to 100 Hz, which often hinders the assessment of the local-scale dynamics. We demonstrate that high-frequency analysis can be achieved by inducing broadband waves and monitoring their media-dependent propagation using optical coherence tomography. Here, we present a new broadband wave analysis based on two-dimensional Fourier transformation.
View Article and Find Full Text PDF