Drug-induced liver injury (DILI), believed to be a multifactorial toxicity, has been a leading cause of attrition of small molecules during discovery, clinical development, and postmarketing. Identification of DILI risk early reduces the costs and cycle times associated with drug development. In recent years, several groups have reported predictive models that use physicochemical properties or and assay endpoints; however, these approaches have not accounted for liver-expressed proteins and drug molecules.
View Article and Find Full Text PDFFor decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry.
View Article and Find Full Text PDFInvestigative Toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions in the pharmaceutical industry. Recently, Investigative Toxicology has contributed to a shift in pharmaceutical toxicology, from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput of Good Laboratory Practice in vivo studies, and increasing demands for adhering to the 3R (Replacement, Reduction and Refinement) principles of animal welfare.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2018
The recent revisions of the Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines emphasize the importance of historical negative controls both for data quality and interpretation. The goal of a HESI Genetic Toxicology Technical Committee (GTTC) workgroup was to collect data from participating laboratories and to conduct a statistical analysis to understand and publish the range of values that are normally seen in experienced laboratories using TK6 cells to conduct the in vitro micronucleus assay. Data from negative control samples from in vitro micronucleus assays using TK6 cells from 13 laboratories were collected using a standard collection form.
View Article and Find Full Text PDF