Publications by authors named "F Valladares"

Article Synopsis
  • * Analysis of data from over 1 million forest plots and thousands of tree species shows that wood density varies significantly by latitude, being up to 30% denser in tropical forests compared to boreal forests, and is influenced mainly by temperature and soil moisture.
  • * The research also finds that disturbances like human activity and fire alter wood density at local levels, affecting forest carbon stock estimates by up to 21%, emphasizing the importance of understanding environmental impacts on forest ecosystems.
View Article and Find Full Text PDF
Article Synopsis
  • Increasing tree species diversity in Mediterranean forests might worsen drought effects on trees rather than help, mainly due to how species compete for water.
  • Research in unmanaged forest stands found that mixed species (four types) exhibited lower water potential and higher hydraulic impairment compared to single species stands (one type).
  • The negative effects of mixing species were most pronounced during the driest summer periods, highlighting potential challenges for mixed Mediterranean forests under future climate conditions.
View Article and Find Full Text PDF

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.

View Article and Find Full Text PDF

Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak.

View Article and Find Full Text PDF

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.

View Article and Find Full Text PDF