Publications by authors named "F Vacandio"

Article Synopsis
  • Hydrothermal carbonization (HTC) is an eco-friendly process that converts pine needle waste into nitrogen-doped hydrochars, aimed at improving environmental reactions.
  • These hydrochars were meticulously characterized and tested as catalytic electrodes for important reactions like oxygen reduction and carbon dioxide reduction, using advanced analytical techniques.
  • The study demonstrated that hydrochars synthesized at specific conditions showed exceptional electrocatalytic performance, achieving a high onset potential in the oxygen reduction reaction and producing valuable carbon products in the carbon dioxide reduction reaction.
View Article and Find Full Text PDF

The protection of zinc anodes in zinc-air batteries (ZABs) is an efficient way to reduce corrosion and Zn dendrite formation and improve cyclability and battery efficiency. Anion-conducting poly(N-vinylbenzyl N,N,N-trimethylammonium)chloride (PVBTMA) thin films were electrodeposited directly on zinc metal using cyclic voltammetry. This deposition process presents a combination of advantages, including selective anion transport in PVBTMA reducing zinc crossover, high interface quality by electrodeposition improving the corrosion protection of zinc and high ionomer stiffness opposing zinc dendrite perforation.

View Article and Find Full Text PDF

In this work, we studied the combination of nitrogen-doped carbon quantum dots (N-CQD), a hydroxide-ion conducting ionomer based on polysulfone (PSU) and polyaniline (PANI), to explore the complementary properties of these materials in high-performance nanostructured electrodes for the oxygen reduction reaction (ORR) in alkaline solution. N-CQD were made by hydrothermal synthesis from glucosamine hydrochloride (GAH) or glucosamine hydrochloride and N-Octylamine (GAH-Oct), and PSU were quaternized with trimethylamine (PSU-TMA). The nanocomposite electrodes were prepared on carbon paper by drop-casting.

View Article and Find Full Text PDF

The present study reports a synthetic condensation process of a vegetable oil (waste) reacted with triethanolamine, maleic anhydride and acrylonitrile in (1 : 1.2 : 2 : 1) mole ratios to obtain N-(β-ethoxypropionitrile)-N,N-bis(2-hydroxyethylethoxy) fatty amide as a major inhibitory product. Corrosion property of steel in a 3% NaCl solution in the presence of a potential inhibitor was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods.

View Article and Find Full Text PDF

All-solid-state batteries were fabricated by assembling a layer of self-organized TiO nanotubes grown on as anode, a thin-film of polymer as an electrolyte and separator, and a layer of composite LiFePO as a cathode. The synthesis of self-organized TiO NTs from Ti-6Al-4V alloy was carried out via one-step electrochemical anodization in a fluoride ethylene glycol containing electrolytes. The electrodeposition of the polymer electrolyte onto anatase TiO NTs was performed by cyclic voltammetry.

View Article and Find Full Text PDF