Publications by authors named "F V Potemkin"

We report on the development of a tunable (1.5-6.5 µm) femtosecond optical parametric amplifier (OPA) based on a novel, to the best of our knowledge, BaGaGeS (BGGS) crystal with a Cr:Forsterite pumping laser.

View Article and Find Full Text PDF

We report on a first of its kind, to our knowledge broadband amplification in a Fe:CdSe single crystal in the mid-IR beyond 5 µm. The experimentally measured gain properties demonstrate saturation fluence close to 13 mJ/cm and support the bandwidth up to 320 nm (full width at half maximum). Such properties allow the energy of the seeding mid-IR laser pulse, generated by an optical parametric amplifier, to be pushed up to more than 1 mJ.

View Article and Find Full Text PDF

Being the second most abundant element on earth after oxygen, silicon remains the working horse for key technologies for the years. Novel photonics platform for high-speed data transfer and optical memory demands higher flexibility of the silicon modification, including on-chip and in-bulk inscription regimes. These are deepness, three-dimensionality, controllability of sizes and morphology of created modifications.

View Article and Find Full Text PDF

The advent of free-electron lasers opens new routes for experimental high-pressure physics, which allows studying dynamics of condensed matter with femtosecond resolution. A rapid compression, that can be caused by laser-induced shock impact, leads to the cascade of high-pressure phase transitions. Despite many decades of study, a complete understanding of the lattice response to such a compression remains elusive.

View Article and Find Full Text PDF

We demonstrate an ultrafast (<0.1 ps) reversible phase transition in silicon (Si) under ultrafast pressure loading using molecular dynamics. Si changes its structure from cubic diamond to β-Sn on the shock-wave front.

View Article and Find Full Text PDF