The development of new drugs addressing serious mental health and other disorders should avoid the psychedelic experience. Analogs of psychedelic drugs can have clinical utility and are termed "psychoplastogens". These represent promising candidates for treating opioid use disorder to reduce drug dependence, with rarely reported serious adverse effects.
View Article and Find Full Text PDFComputational approaches are widely applied in drug discovery to explore properties related to bioactivity, physiochemistry, and toxicology. Over at least the last 20 years, the exploitation of machine learning on molecular data sets has been used to understand the structure-activity relationships that exist between biomolecules and druggable targets. More recently, these methods have also seen application for phenotypic screening data for neglected diseases such as tuberculosis and malaria.
View Article and Find Full Text PDFChagas disease is caused by the single-flagellated protozoan , which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in could help to develop new drugs to treat the disease caused by these protozoa.
View Article and Find Full Text PDFButyrylcholinesterase (BChE) is a target of interest in late-stage Alzheimer's Disease (AD) where selective BChE inhibitors (BIs) may offer symptomatic treatment without the harsh side effects of acetylcholinesterase (AChE) inhibitors. In this study, we explore multiple machine learning strategies to identify BIs , optimizing for precision over all other metrics. We compare state-of-the-art supervised contrastive learning (CL) with deep learning (DL) and Random Forest (RF) machine learning, across single and sequential modeling configurations, to identify the best models for BChE selectivity.
View Article and Find Full Text PDF