Importance: As an accessible part of the central nervous system, the retina provides a unique window to study pathophysiological mechanisms of brain disorders in humans. Imaging and electrophysiological studies have revealed retinal alterations across several neuropsychiatric and neurological disorders, but it remains largely unclear which specific cell types and biological mechanisms are involved.
Objective: To determine whether specific retinal cell types are affected by genomic risk for neuropsychiatric and neurological disorders and to explore the mechanisms through which genomic risk converges in these cell types.
Previous studies have suggested that choroid plexus (ChP) enlargement occurs in individuals with schizophrenia-spectrum disorders (SSD) and is associated with peripheral inflammation. However, it is unclear whether such an enlargement delineates a biologically defined subgroup of SSD. Moreover, it remains elusive how ChP is linked to brain regions associated with peripheral inflammation in SSD.
View Article and Find Full Text PDFBackground: Optical coherence tomography and electroretinography studies have revealed structural and functional retinal alterations in individuals with schizophrenia spectrum disorders (SSDs). However, it remains unclear which specific retinal layers are affected; how the retina, brain, and clinical symptomatology are connected; and how alterations of the visual system are related to genetic disease risk.
Methods: Optical coherence tomography, electroretinography, and brain magnetic resonance imaging were applied to comprehensively investigate the visual system in a cohort of 103 patients with SSDs and 130 healthy control individuals.