Considering the variability in individual responses to opioids and the growing concerns about opioid addiction, prescribing opioids for postoperative pain management after spine surgery presents significant challenges. Therefore, this study undertook a novel pharmacogenomics-based in silico investigation of FDA-approved opioid medications. The DrugBank database was employed to identify all FDA-approved opioids.
View Article and Find Full Text PDFIn previous studies, we have identified the tumor suppressor proteins Fhit (fragile histidine triad) and Nit1 (Nitrilase1) as interaction partners of β-catenin both acting as repressors of the canonical Wnt pathway. Interestingly, in and these proteins are expressed as NitFhit fusion proteins. According to the Rosetta Stone hypothesis, if proteins are expressed as fusion proteins in one organism and as single proteins in others, the latter should interact physically and show common signaling function.
View Article and Find Full Text PDFBackground Context: Outcomes of treatment in care of patients with spinal disorders are directly related to patient selection and treatment indications. However, for many disorders, there is absence of consensus for precise indications. With the increasing emphasis on quality and value in spine care, it is essential that treatment recommendations and decisions are optimized.
View Article and Find Full Text PDFDetection and conversion of mechanical forces into biochemical signals controls cell functions during physiological and pathological processes. Mechanosensing is based on protein deformations and reorganizations, yet the molecular mechanisms are still unclear. Using a cell-stretching device compatible with super-resolution microscopy and single-protein tracking, we explored the nanoscale deformations and reorganizations of individual proteins inside mechanosensitive structures.
View Article and Find Full Text PDFChondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans are abundant on the cell surface and in the extracellular matrix and have important functions in matrix structure, cell-matrix interaction and signaling. The DS epimerases 1 and 2, encoded by Dse and Dsel, respectively, convert CS to a CS/DS hybrid chain, which is structurally and conformationally richer than CS, favouring interaction with matrix proteins and growth factors. We recently showed that Xenopus Dse is essential for the migration of neural crest cells by allowing cell surface CS/DS proteoglycans to adhere to fibronectin.
View Article and Find Full Text PDF