Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions.
View Article and Find Full Text PDFThe complex roles of myeloid cells, including microglia and perivascular macrophages, are central to the neurobiology of Alzheimer's disease (AD), yet they remain incompletely understood. Here, we profiled 832,505 human myeloid cells from the prefrontal cortex of 1,607 unique donors covering the human lifespan and varying degrees of AD neuropathology. We delineated 13 transcriptionally distinct myeloid subtypes organized into 6 subclasses and identified AD-associated adaptive changes in myeloid cells over aging and disease progression.
View Article and Find Full Text PDFThe rapid adoption of single-cell technologies has created an opportunity to build single-cell 'atlases' integrating diverse datasets across many laboratories. Such atlases can serve as a reference for analyzing and interpreting current and future data. However, it has become apparent that atlasing approaches differ, and the impact of these differences are often unclear.
View Article and Find Full Text PDF