Background And Aims: Cholangiocarcinoma (CCA), a rare and aggressive hepatobiliary malignancy, presents significant clinical management challenges. Despite rising incidence and evolving treatment options, prognosis remains poor, motivating the exploration of real-world data for enhanced understanding and patient care.
Methods: This multicenter study analyzed data from 120 metastatic CCA patients at three institutions from 2016 to 2023.
Purpose: We aimed to assess the efficacy of machine learning and radiomics analysis using magnetic resonance imaging (MRI) with a hepatospecific contrast agent, in a pre-surgical setting, to predict tumor budding in liver metastases.
Methods: Patients with MRI in a pre-surgical setting were retrospectively enrolled. Manual segmentation was made by means 3D Slicer image computing, and 851 radiomics features were extracted as median values using the PyRadiomics Python package.
Background: Metastatic disease in tumors originating from the gastrointestinal tract can exhibit varying degrees of tumor burden at presentation. Some patients follow a less aggressive disease course, characterized by a limited number of metastatic sites, referred to as "oligo-metastatic disease" (OMD). The precise biological characteristics that define the oligometastatic behavior remain uncertain.
View Article and Find Full Text PDFObjective: The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated.
Methods: The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion.