Polyimide-based hollow fibers were spun using a triple orifice spinneret in order to apply them in gas separation. The membrane structure was tailored producing a porous external layer and a thin internal skin layer, that controlled the gas transport. The measurement of gas permeation rates and the morphological analysis were combined to obtain information on the performance of the membranes.
View Article and Find Full Text PDFThe creation of a liver tissue that recapitulates the micro-architecture and functional complexity of a human organ is still one of the main challenges of liver tissue engineering. Here we report on the development of a 3D vascularized hepatic tissue based on biodegradable hollow fiber (HF) membranes of poly(ε-caprolactone) (PCL) that compartmentalize human hepatocytes on the external surface and between the fibers, and endothelial cells into the fiber lumen. To this purpose, PCL HF membranes were prepared by a dry-jet wet phase inversion spinning technique tailoring the operational parameters in order to obtain fibers with suitable properties.
View Article and Find Full Text PDFThe systematic evaluation of the gas transport properties related to differences in the history of the samples is a useful tool to appropriately design a membrane-based gas separation system. The permeation rate of six pure gases was measured over time in asymmetric hollow-fiber (HF) samples, that were prepared according to the non-solvent-induced phase separation in different operation conditions, in order to identify their response to physical aging. Four types of HFs having a different structure were analyzed, comparing samples spun in a triple-orifice spinneret to HFs prepared using a conventional spinneret.
View Article and Find Full Text PDFHollow fibers (HFs) are widely applied in different membrane operations, particularly in gas separation. The present work investigates the effect of post-spinning treatment on the gas transport properties of polyimide-based HFs. The membranes were spun by using both a conventional spinneret and a triple-orifice spinneret.
View Article and Find Full Text PDFThe preparation of polyacrylonitrile (PAN) hollow fiber (HF) membranes has been carried out by dry-jet wet spinning. PAN HF membranes were coated with chitosan biopolymers 2 wt% by dip coating and further crosslinked by chemical reagents (Tri sodium polyphosphate). PAN HF (Virgin) and PAN/chitosan coated membrane were characterized by SEM and tested for water flux.
View Article and Find Full Text PDF