Publications by authors named "F Tanneberger"

Peat formation is the key process responsible for carbon sequestration in peatlands. In rich fens, peat is formed by brown mosses and belowground biomass of vascular plants. However, the impact of ecohydrological settings on the contribution of mosses and belowground biomass to peat formation remains an open question.

View Article and Find Full Text PDF

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions.

View Article and Find Full Text PDF

Paludiculture, the productive use of wet or rewetted peatlands, offers an option for continued land use by farmers after rewetting formerly drained peatlands, while reducing the greenhouse gas emissions from peat soils. Biodiversity conservation may benefit, but research on how biodiversity responds to paludiculture is scarce. We conducted a multi-taxon study investigating vegetation, breeding bird and arthropod diversity at six rewetted fen sites dominated by Carex or Typha species.

View Article and Find Full Text PDF

The importance of air purifiers has increased in recent years, especially with the "coronavirus disease 2019" pandemic. The efficacy of air purifiers is usually determined under laboratory conditions before widespread application. The standard procedure for testing depends on virus cultivation and titration on cell culture.

View Article and Find Full Text PDF

Objectives: The aim of this in vitro study was to investigate viruses' stabilities on manual toothbrushes using feline coronavirus (FeCoV) as representative of coronaviruses and an Avian influenza A virus H1N1 for influenza viruses.

Material And Methods: Two viruses, FeCoV (Strain Munich; titer 107.5 TCID50/ml) and H1N1 (RE 230/90; titer 106.

View Article and Find Full Text PDF