Publications by authors named "F T Moutos"

Biological resurfacing of entire articular surfaces represents a challenging strategy for the treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. Here, we present the culmination of multiple avenues of interdisciplinary research leading to the development and testing of bioartificial cartilage for tissue-engineered resurfacing of the hip joint.

View Article and Find Full Text PDF

Articular cartilage has unique load-bearing properties but has minimal capacity for intrinsic repair. Here, we used three-dimensional weaving, additive manufacturing, and autologous mesenchymal stem cells to create a tissue-engineered, bicomponent implant to restore hip function in a canine hip osteoarthritis model. This resorbable implant was specifically designed to function mechanically from the time of repair and to biologically integrate with native tissues for long-term restoration.

View Article and Find Full Text PDF

Biologic drug therapies are increasingly used for inflammatory diseases such as rheumatoid arthritis but may cause significant adverse effects when delivered continuously at high doses. We used CRISPR-Cas9 genome editing of iPSCs to create a synthetic gene circuit that senses changing levels of endogenous inflammatory cytokines to trigger a proportional therapeutic response. Cells were engineered into cartilaginous constructs that showed rapid activation and recovery in response to inflammation in vitro or in vivo.

View Article and Find Full Text PDF

The repair of focal cartilage defects remains one of the foremost issues in the field of orthopaedics. Chondral defects may arise from a variety of joint pathologies and left untreated, will likely progress to osteoarthritis. Current repair techniques, such as microfracture, result in short-term clinical improvements but have poor long-term outcomes.

View Article and Find Full Text PDF

The development of mechanically functional cartilage and bone tissue constructs of clinically relevant size, as well as their integration with native tissues, remains an important challenge for regenerative medicine. The objective of this study was to assess adult human mesenchymal stem cells (MSCs) in large, three-dimensionally woven poly(ε-caprolactone; PCL) scaffolds in proximity to viable bone, both in a nude rat subcutaneous pouch model and under simulated conditions in vitro. In Study I, various scaffold permutations-PCL alone, PCL-bone, "point-of-care" seeded MSC-PCL-bone, and chondrogenically precultured Ch-MSC-PCL-bone constructs-were implanted in a dorsal, ectopic pouch in a nude rat.

View Article and Find Full Text PDF