Publications by authors named "F T Limpoco"

γ-Graphyne is the most symmetric sp/sp allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization.

View Article and Find Full Text PDF

We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.

View Article and Find Full Text PDF

Methods for the generation of substratespresenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates.

View Article and Find Full Text PDF

Aniline-catalyzed hydrazone ligation between surface-immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.

View Article and Find Full Text PDF

The tribological properties of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG)-coated oxide interfaces have been investigated with atomic force microscopy (AFM) as a function of the molecular structure. Polymer-bearing surfaces were obtained via spontaneous adsorption of the polymer onto the oxide substrate from a buffered solution of physiological pH. Interfacial friction of these PLL-g-PEG-coated surfaces was found to be highly dependent on the duration of deposition and the architecture of PLL-g-PEG.

View Article and Find Full Text PDF