Treatment of severely injured patients represents a major challenge, in part due to the unpredictable risk of major adverse events, including death. Preemptive personalized treatment aimed at preventing these events is a crucial objective of patient management; however, the currently available scoring systems provide only moderate guidance. Biomarkers from proteomics/peptidomics studies hold promise for improving the current situation, ultimately enabling precision medicine based on individual molecular profiles.
View Article and Find Full Text PDFBy possibly bridging the gap between 2D cell assays and applications, tumor cell spheroid cultures offer promising avenues for advancing innovation in nuclear medicine. Regarding the evaluation of therapeutic radioligands, tumor cell spheroids have been successfully used to assess the therapeutic efficacy against human tumors. However, studies employing spheroids for testing diagnostic tracers are missing.
View Article and Find Full Text PDFResolving the three-dimensional structure of transition metal oxide nanoparticles (TMO-NPs), upon self-restructuring from solution, is crucial for tuning their structure-functionality. Yet, this remains challenging as this process entails complex structure fluctuations, which are difficult to track experimentally and, hence, hinder the knowledge-driven optimization of TMO-NPs. Herein, we combine high-energy synchrotron X-ray absorption and X-ray total scattering experiments with atomistic multiscale simulations to investigate the self-restructuring of self-assembled Co-NPs from solution under dark or photocatalytic water oxidation conditions at distinct reaction times and atomic length-scales.
View Article and Find Full Text PDF