This paper analyzes the effects of intra-scan motion and demonstrates the possibility of correcting them directly in k-space with a new automatic retrospective method. The method is presented for series of 2D acquisitions with Cartesian sampling. Using a reference k-space acquisition (corrected for translations) within the series, intra-scan motion parameters are accurately estimated for each trajectory in k-space of each data set in the series resulting in pseudo-random sample positions.
View Article and Find Full Text PDFA method - PA-keyhole - for 2D/3D dynamic magnetic resonance imaging with radial scanning is proposed. PA-keyhole exploits the inherent strong oversampling in the center of k-space, which contains crucial temporal information regarding contrast evolution. The method is based on: (1).
View Article and Find Full Text PDFWe have worked on multi-dimensional magnetic resonance imaging (MRI) data acquisition and related image reconstruction methods that aim at reducing the MRI scan time. To achieve this scan-time reduction we have combined the approach of 'increasing the speed' of k-space acquisition with that of 'deliberately omitting' acquisition of k-space trajectories (sparse sampling). Today we have a whole range of (sparse) sampling distributions and related reconstruction methods.
View Article and Find Full Text PDFThis paper deals with the influence of the transient response and group delay of digital filters on the MRI signal and its aspects in image reconstruction. The consequence of digital filtration on the acquired signal will be shown in the time domain (k-space) for three basic imaging methods-echo scan, radial scan and spiral scan. The influence of the group delay and transient response of filters will be explained and a method will be proposed which compensates both these phenomena while retaining all the advantages of digital filtration.
View Article and Find Full Text PDF