This paper investigates the application of X-ray micro-computed tomography (micro-CT) to accurately evaluate bone formation within 3D printed, porous Ti6Al4V implants manufactured using Electron Beam Melting (EBM), retrieved after six months of healing in sheep femur and tibia. All samples were scanned twice (i.e.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
August 2016
Aim: Surgical corrections of dentofacial deformities have both physical and psychological impact on quality of life (QoL). The objectives of the present study were to evaluate the impact of oral health related problems on QoL before and after a combination of orthodontic treatment and orthognathic surgery. Additionally, the study aimed to identify correlations between different dentofacial patterns and possible improvements due to treatment.
View Article and Find Full Text PDFIn the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection.
View Article and Find Full Text PDFSealing exposed dental tubules is the most effective and long-term way to relieve the pain induced by dental sensitivity. A bioactive hollow sphere (strontium substituted calcium phosphate) was synthesized and added in toothpaste to study its effect on dental hypersensitivity via tooth tubules occlusion and mineralization. The size of spheres is perfect for penetrating into dental tubules, reaching to 20 μm into the tubules.
View Article and Find Full Text PDFUnlabelled: In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora.
View Article and Find Full Text PDF