The need for faster and more accessible alternatives to laboratory microscopy is driving many innovations throughout the image and data acquisition chain in the biomedical field. Benchtop microscopes are bulky, lack communications capabilities, and require trained personnel for analysis. New technologies, such as compact 3D-printed devices integrated with the Internet of Things (IoT) for data sharing and cloud computing, as well as automated image processing using deep learning algorithms, can address these limitations and enhance the conventional imaging workflow.
View Article and Find Full Text PDFPurpose: Hyperglycemia is a major risk factor for early lesions of diabetic retinal disease (DRD). Updating the DRD staging system to incorporate relevant basic and cellular mechanisms pertinent to DRD is necessary to better address early disease, disease progression, the use of therapeutic interventions, and treatment effectiveness.
Design: We sought to review preclinical and clinical evidence on basic and cellular mechanisms potentially pertinent to DRD that might eventually be relevant to update the DRD staging system.
In recent decades, driven by the needs of industry and medicine, researchers have been investigating how to remove carefully from the main flow microscopic particles or clusters of them. Among all the approaches proposed, crossflow filtration is one of the most attractive as it provides a non-destructive, label-free and in-flow sorting method. In general, the separation performance shows capture and separation efficiencies ranging from 70% up to 100%.
View Article and Find Full Text PDFMeasuring the transit time of a cell forced through a bottleneck is one of the most widely used techniques for the study of cell deformability in flow. It in turn provides an accessible and rapid way of obtaining crucial information regarding cell physiology. Many techniques are currently being investigated to reliably retrieve this time, but their translation to diagnostic-oriented devices is often hampered by their complexity, lack of robustness, and the bulky external equipment required.
View Article and Find Full Text PDFStatistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses.
View Article and Find Full Text PDF