There are two major styles of maggot debridement dressings: (1) confinement dressings that form a cage around the wound, and (2) containment dressings that completely surround the maggots within a sealed porous bag. For producers and clinicians wanting to prepare containment dressings using readily available polyester bags, it is currently difficult to seal these bags without expensive high-temperature plastic welders. This study aimed to identify simple and affordable methods for sealing maggots within polyester net bags.
View Article and Find Full Text PDFThis review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine.
View Article and Find Full Text PDFNano zero-valent (nZVI) based composite have been widely utilized in environmental remediation. However, the rapid agglomeration and quick deactivation of nZVI limited its application on large scale. In this work, CaCO supported nZVI-Ni catalyst, namely nZVI-Ni@CaCO was prepared and used for the efficient removal of trichloroethylene (TCE) in PS oxidation process.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2024
Healable electronic skins, an essential component for future soft robotics, implantable bioelectronics, and smart wearable systems, necessitate self-healable and pliable materials that exhibit functionality at intricate interfaces. Although a plethora of self-healable materials have been developed, the fabrication of highly conformal biocompatible functional materials on complex biological surfaces remains a formidable challenge. Inspired by regenerative properties of skin, we present the self-assembled transfer-printable liquid metal epidermis (SALME), which possesses autonomous self-healing capabilities at the oil-water interface.
View Article and Find Full Text PDF