Dielectric Spectroscopy (DS) and TimeDomain-Nuclear Magnetic Resonance (TD-NMR) were exploited to investigate water and solid dynamics in chicken's Pectoralis major muscles having macroscopically normal appearance (N) and affected by Wooden Breasts (WB) abnormality. 147 PMM were collected and classified as macroscopically normal (N) (N=74) or Wooden Breast (WB) (N=73) based on their visual appearance and manual palpation. Protons' T (transverse relaxation time), and dielectric properties were carried out.
View Article and Find Full Text PDFWooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence.
View Article and Find Full Text PDFThe global demand for white chicken meat along with the increase in the occurrence of growth-related breast muscle myopathies (BMMs) [namely white striping (WS), wooden breast (WB), and spaghetti meat (SM)] highlights the need for solutions that will improve meat quality while maintaining the high productivity of modern broilers. Guanidinoacetate (GAA), a precursor of creatine, is used as a feed additive and has previously shown the potential to affect the quality of breast meat. This study investigated growth performance, meat quality and the risk ratio for the development of BMMs in broilers assigned to two dietary treatments: control (CON) group, fed a commercial basal diet, and supplemented GAA (sGAA) group, receiving the control diet supplemented on top with 0.
View Article and Find Full Text PDF