Publications by authors named "F Siepmann"

Mixtures of hyaluronic acid (HA, in the semi-dilute entangled regime) with liposomes (high lipid concentration) exhibit a great interest in drug delivery. Considering the difference of microstructures when varying the liposome surface, we aimed to determine if liposome characteristics (surface and size) also influenced their release from these hybrid systems and to explore the mechanisms involved. Small-angle neutron scattering, cryogenic electron microscopy, zetametry, and dynamic light scattering were used to characterize liposomes.

View Article and Find Full Text PDF

This study evaluated the potential of poly(ethylene vinyl acetate) (EVA) copolymers as matrix formers in miniaturised implants, allowing to achieve controlled drug delivery into the inner ear. Due to the blood-cochlea barrier, it is impossible to reliably deliver a drug to this tiny and highly sensitive organ in clinical practice. To overcome this bottleneck, different EVA implants were prepared by hot melt extrusion, altering the vinyl acetate content and implant diameter.

View Article and Find Full Text PDF

Colonic drug delivery offers numerous pharmaceutical opportunities, including direct access to local therapeutic targets and drug bioavailability benefits arising from the colonic epithelium's reduced abundance of cytochrome P450 enzymes and particular efflux transporters. Current workflows for developing colonic drug delivery systems involve time-consuming, low throughput in vitro and in vivo screening methods, which hinder the identification of suitable enabling materials. Polysaccharides are useful materials for colonic targeting, as they can be utilised as dosage form coatings that are selectively digested by the colonic microbiota.

View Article and Find Full Text PDF

In-situ forming poly(lactic-co-glycolic acid) (PLGA) implants offer a great potential for controlled drug delivery for a variety of applications, e.g. periodontitis treatment.

View Article and Find Full Text PDF

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs.

View Article and Find Full Text PDF