DL_POLY Quantum 2.0, a vastly expanded software based on DL_POLY Classic 1.10, is a highly parallelized computational suite written in FORTRAN77 with a modular structure for incorporating nuclear quantum effects into large-scale/long-time molecular dynamics simulations.
View Article and Find Full Text PDFMost of the chemistry in nanoporous materials with small pore sizes and windows takes place on the outer surface, which is in direct contact with the substrate/solvent, rather than within the pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics (MD) simulations to decipher the interaction of water with a realistic finite ∼5.1 nm nanoparticle (NP) model of ZIF-8, with edges containing undercoordinated Zn metal sites, vs a conventionally employed pristine crystalline bulk (CB) model.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2023
Ring polymer surface hopping (RPSH) has been recently introduced as a well-tailored method for incorporating nuclear quantum effects, such as zero-point energy and tunneling, into nonadiabatic molecular dynamics simulations. The practical widespread usage of RPSH demands a comprehensive benchmarking of different reaction regimes and conditions with equal emphasis on demonstrating both the cons and the pros of the method. Here, we investigate the fundamental questions related to the conservation of energy and detailed balance in the context of RPSH.
View Article and Find Full Text PDFThe advent of π-stacked layered metal-organic frameworks (MOFs), which offer electrical conductivity on top of permanent porosity and high surface area, opened up new horizons for designing compact MOF-based devices such as battery electrodes, supercapacitors, and spintronics. Permutation of structural building blocks, including metal nodes and organic linkers, in these electrically conductive (EC) materials, results in new systems with unprecedented and unexplored physical and chemical properties. With the ultimate goal of providing a platform for accelerated material design and discovery, here we lay the foundations for the creation of the first comprehensive database of EC-MOFs with an experimentally guided approach.
View Article and Find Full Text PDFCorrection for 'Gauging van der Waals interactions in aqueous solutions of 2D MOFs: when water likes organic linkers more than open-metal sites' by Mohammad R. Momeni , 2021, , 3135-3143, https://doi.org/10.
View Article and Find Full Text PDF