Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion.
View Article and Find Full Text PDFImmunometabolism investigates the intricate relationship between the immune system and cellular metabolism. This study delves into the consequences of mitochondrial frataxin (FXN) depletion, the primary cause of Friedreich's ataxia (FRDA), a debilitating neurodegenerative condition characterized by impaired coordination and muscle control. By using single-cell RNA sequencing, we have identified distinct cellular clusters within the cerebellum of an FRDA mouse model, emphasizing a significant loss in the homeostatic response of microglial cells lacking FXN.
View Article and Find Full Text PDFThis study aims to obtain a cyto-compatible 3D printable bio-resin for the manufacturing of meshes designed from acquired real patients' bone defect to be used in future for guided bone regeneration (GBR), achieving the goal of personalized medicine, decreasing surgical, recovery time, and patient discomfort. To this purpose, a biobased, biocompatible, and photo-curable resin made of acrylated epoxidized soybean oil (AESO) diluted with soybean oil (SO) is developed and 3D printed using a commercial digital light processing (DLP) 3D printer. 3D printed samples show good thermal properties, allowing for thermally-based sterilization process and mechanical properties typical of crosslinked natural oils (i.
View Article and Find Full Text PDFFriedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications.
View Article and Find Full Text PDFPurpose: To evaluate medium-term outcomes of knee cartilage defects repair by autologous matrix-induced chondrogenesis combined with simultaneous use of autologous adipose tissue graft and adipose tissue mesenchymal cells, defined as LIPO-AMIC technique.
Methods: The LIPO-AMIC technique has been used in ICRS degree III-IV knee defects. Eighteen patients have been prospectively evaluated during two and five years both clinically and by MRI.