During deposition, modification, and etching of thin films and nanomaterials in reactive plasmas, many active species can interact with the sample simultaneously. This includes reactive neutrals formed by fragmentation of the feed gas, positive ions, and electrons generated by electron-impact ionization of the feed gas and fragments, excited states (in particular, long-lived metastable species), and photons produced by spontaneous de-excitation of excited atoms and molecules. Notably, some of these species can be transiently present during the different phases of plasma processing, such as etching of thin layer deposition.
View Article and Find Full Text PDFCoating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This Letter presents investigations of TiO_{2} mixed with SiO_{2} (TiO_{2}:SiO_{2}) as a coating material. We find that, after heat treatment for 100 h at 850 °C, thermal noise of a highly reflective coating comprising of TiO_{2}:SiO_{2} and SiO_{2} reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors-with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO_{2} layers.
View Article and Find Full Text PDFGlasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures.
View Article and Find Full Text PDFThe sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is a material property characterized by the mechanical loss angle.
View Article and Find Full Text PDFWe report on the cross-calibration of Thomson Parabola (TP) and Time-of-Flight (TOF) detectors as particle diagnostics, implemented on the most recent setup of the ALLS 100 TW laser-driven ion acceleration beamline. The Microchannel Plate (MCP) used for particle detection in the TP spectrometer has been calibrated in intensity on the tandem linear accelerator at the Université de Montréal. The experimental data points of the scaling factor were obtained by performing a pixel cluster analysis of single proton impacts on the MCP.
View Article and Find Full Text PDF