Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFPeripheral nerve injury (PNI) is characterized by a loss of cellular and axonal integrity, often leading to limited functional recovery and pain. Many PNIs are not amenable to repair with traditional techniques; however, cell therapies, particularly Schwann cells (SCs), offer the promise of neural tissue replacement and functional improvement. Exosomes, which carry cellular signaling molecules, can be secreted by SCs and have shown promise in PNI.
View Article and Find Full Text PDFChronic chagasic cardiomyopathy is the most severe clinical manifestation of Chagas disease, which affects approximately seven million people worldwide. Latin American countries bear the highest burden, with the greatest morbidity and mortality rates. Currently, diagnostic methods do not provide information on the risk of progression to severe stages of the disease.
View Article and Find Full Text PDFNanolaminates based on ferroelectric polycrystalline doped HfO have gained interest because those compounds show enhanced functional properties. Here, we achieve coexisting improvement of remanent polarization and dielectric permittivity in wake-up-free epitaxial HfZrO/HfO nanolaminates with different numbers of HfO nanolayers if compared with HfZrO single films of equivalent thickness or other reported polycrystalline nanolaminates. Comprehensive structural characterization reveals that the origin of the enhancement must be the larger amount of the orthorhombic phase in the nanolaminates.
View Article and Find Full Text PDFPurpose: To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments.
Methods: The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain.