Publications by authors named "F Saltarelli"

Silicate bonding is a flexible bonding method that enables room-temperature bonding of many types of materials with only moderate flatness constraints. It is a promising approach for bonding components in high power laser systems, since it results in a thin and low-absorption interface layer between the bonded materials. Here we demonstrate for the first time silicate bonding of a sapphire window to a SEmiconductor Saturable Absorber Mirror (SESAM) and use the composite structure to mode-lock a high-power thin-disk laser.

View Article and Find Full Text PDF

We present a first power-scaled nonlinear-mirror (NLM) modelocked thin-disk laser based on an Yb-doped gain material. The laser oscillator delivers average output powers up to 87 W and peak powers up to 14.7 MW with sub-600-femtosecond pulses at ≈9-MHz repetition rate.

View Article and Find Full Text PDF

We report a semiconductor saturable absorber mirror (SESAM)-modelocked thin-disk laser oscillator delivering a record 350-W average output power with 940-fs, 39-µJ pulses at 8.88-MHz repetition rate and 37-MW peak power. This oscillator is based on the Yb:YAG gain material and has a large pump spot on the disk.

View Article and Find Full Text PDF

We unveil a gas-lens effect in kW-class thin-disk lasers, which accounts in our experiments for 33% of the overall disk thermal lensing. By operating the laser in vacuum, the gas lens vanishes. This leads to a lower overall thermal lensing and hence to a significantly extended power range of optimal beam quality.

View Article and Find Full Text PDF

We demonstrate a frequency-doubling nonlinear-mirror (NLM) modelocked thin-disk laser. This modelocking technique, composed of an intracavity second harmonic crystal in combination with a dichroic output coupler, offers robust operation decoupled from cavity stability (as in semiconductor saturable absorber mirror (SESAM) modelocking) combined with an ultrafast saturable loss and high modulation depth (as in Kerr-lens modelocking (KLM)). With our NLM diode-pumped Yb:YAG thin-disk laser we achieve 21 W of average power at 323-fs pulse duration, which is an order of magnitude shorter than the previously obtained duration with the same technique in bulk lasers.

View Article and Find Full Text PDF