Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.
View Article and Find Full Text PDFMaternally inherited duplication of chromosome 15q11-q13 (Dup15q) is a pathogenic copy number variation (CNV) associated with autism spectrum disorder (ASD). Recently, paternally derived duplication has also been shown to contribute to the development of ASD. The molecular mechanism underlying paternal Dup15q remains unclear.
View Article and Find Full Text PDFCesarean section (C/S) is one way of delivering babies, and is chosen when mothers or babies are facing problems or life-threatening conditions during pregnancy. Many meta-analyses have suggested an etiological relationship between C/S delivery and autism spectrum disorders (ASDs). However, as a risk factor for ASDs, C/S delivery has not yet been well studied.
View Article and Find Full Text PDFSerotonin (5-HT) is a well-known modulator of behavioral, physiological, and emotional functions of the forebrain region. We recently discovered alterations of serotonergic synaptic modulations in both, the prefrontal cortex (PFC) and the somatosensory cortex, in the 15q dup mouse model of autism spectrum disorder (ASD). To further understand the roles of the 5-HT system implicated in developmental disorders such as ASD, comparison with model animals exhibiting different phenotypes may be useful.
View Article and Find Full Text PDFThe prefrontal cortex (PFC) has been extensively studied in autism spectrum disorder (ASD) in an attempt to understand the deficits in executive and other higher brain functions related to sociability and emotion. Disruption of the excitatory/inhibitory (E/I) balance of cortical circuits is thought to underlie the pathophysiology of ASD. Recently, we showed that 15q dup mice (a model for ASD with human chromosome 15q11-13 paternal duplication) exhibit disruption of the E/I balance in layer 2/3 pyramidal neurons of the somatosensory cortex due to a decrease in the number of inhibitory synapses.
View Article and Find Full Text PDF