Publications by authors named "F Saint Georges"

The elevated plus maze (EPM) apparatus consists of two open arms that provide aversive spaces and two closed arms that provide protective and welcoming spaces. Here, we present a protocol to implement the classical EPM apparatus in a real-time optogenetic environment to address behavioral avoidance in mice. We describe steps for performing stereotaxic surgery, mouse manipulation, and experimental setup.

View Article and Find Full Text PDF

The Insula functions as a multisensory relay involved in socio-emotional processing with projections to sensory, cognitive, emotional, and motivational regions. Notably, the interhemispheric projection from the Insula to the contralateral Insula is a robust yet underexplored connection. Using viral-based tracing neuroanatomy, ex vivo and in vivo electrophysiology, in vivo fiber photometry along with targeted circuit manipulation, we elucidated the nature and role of Insula communication in social and anxiety processing in mice.

View Article and Find Full Text PDF

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running.

View Article and Find Full Text PDF

The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) is critical for behavioral control; its dysregulation consequently correlated with neurological and neuropsychiatric disorders, including Parkinson's disease. Deep brain stimulation (DBS) targeting the STN successfully alleviates parkinsonian motor symptoms. However, low mood and depression are affective side effects.

View Article and Find Full Text PDF