Publications by authors named "F Sahraoui"

The differential heating of electrons and ions by turbulence in weakly collisional magnetized plasmas and the scales at which such energy dissipation is most effective are still debated. Using a large data sample measured in Earth's magnetosheath by the magnetospheric multiscale mission and the coarse-grained energy equations derived from the Vlasov-Maxwell system, we find evidence of a balance over two decades in scales between the energy cascade and dissipation rates. The decline of the cascade rate at kinetic scales (in contrast with a constant one in the inertial range), is balanced by an increasing ion and electron heating rates, estimated via the pressure strain.

View Article and Find Full Text PDF

The interplay between plasma turbulence and magnetic reconnection remains an unsettled question in astrophysical and laboratory plasmas. Here, we report the first observational evidence that magnetic reconnection drives subion-scale turbulence in magnetospheric plasmas by transferring energy to small scales. We employ a spatial "coarse-grained" model of Hall magnetohydrodynamics, enabling us to measure the nonlinear energy transfer rate across scale ℓ at position x.

View Article and Find Full Text PDF

We derive the coarse-graining (CG) equations of incompressible Hall magnetohydrodynamic (HMHD) turbulence to investigate the local (in space) energy transfer rate as a function of the filtering scale ℓ. First, the CG equations are space averaged to obtain the analytical expression of the mean cascade rate. Its application to three-dimensional simulations of (weakly compressible) HMHD shows a cascade rate consistent with the value of the mean dissipation rate in the simulations and with the classical estimates based on the "third-order" law.

View Article and Find Full Text PDF

-Kyrieleis arteritis is a rare manifestation in posterior uveitis-Kyrieleis arteritis is most frequently reported in ocular toxoplasmosis.-The pathogenesis still highly debated.-It is characterized by the presence of focal, segmental plaques or exudates within retinal arteries.

View Article and Find Full Text PDF

We derive an exact law for compressible pressure-anisotropic magnetohydrodynamic turbulence. For a gyrotropic pressure tensor, we study the double-adiabatic case and show the presence of new flux and source terms in the exact law, reminiscent of the plasma instability conditions due to pressure anisotropy. The Hall term is shown to bring ion-scale corrections to the exact law without affecting explicitly the pressure terms.

View Article and Find Full Text PDF