Publications by authors named "F Sabbione"

Immunometabolism is an emerging growing field that focuses on the role of cellular metabolism in the regulation of immune cell function and fate. Thus, proliferation, differentiation, activation, and function of immune cell populations are modulated by reprogramming their fueling and metabolic pathways. Pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus where trophoblast cells have a central role.

View Article and Find Full Text PDF

Dry eye disease (DED) is characterized by a dysfunctional tear film in which the corneal epithelium and its abundant nerves are affected by ocular desiccation and inflammation. Although adaptive immunity and specifically CD4 T cells play a role in DED pathogenesis, the exact contribution of these cells to corneal epithelial and neural damage remains undetermined. To address this, we explored the progression of a surgical DED model in wild-type (WT) and T cell-deficient mice.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the effect of sodium hyaluronate (SH) on benzalkonium chloride (BAK)-induced toxicity in the ocular surface epithelium and corneal nerves.

Methods: Ocular surface epithelial cells from Balb/c mice were cultured with 0.1% to 0.

View Article and Find Full Text PDF

Unlabelled: serovar Typhimurium causes acute diarrhea upon oral infection in humans. The harsh and proteolytic environment found in the gastrointestinal tract is the first obstacle that these bacteria face after infection. However, the mechanisms that allow to survive the hostile conditions of the gut are poorly understood.

View Article and Find Full Text PDF

Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown.

View Article and Find Full Text PDF