Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS.
View Article and Find Full Text PDFBiofilms are complex biomaterials comprising a well-organized network of microbial cells encased in self-produced extracellular polymeric substances (EPS). This paper presents a detailed account of the implementation of optical coherence elastography (OCE) measurements tailored for the elastic characterization of biofilms. OCE is a non-destructive optical technique that enables the local mapping of the microstructure, morphology, and viscoelastic properties of partially transparent soft materials with high spatial and temporal resolution.
View Article and Find Full Text PDFAnammox-based nitrogen removal and enhanced biological phosphorus removal (EBPR) are increasingly applied for nutrient removal from wastewater, but are typically operated in separate reactors. Here, a novel process for integrated partial nitritation/anammox (PN/A) and EBPR in a single reactor employing integrated fixed film activated sludge was tested. The reactor was fed with mainstream municipal wastewater (5.
View Article and Find Full Text PDFHydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads.
View Article and Find Full Text PDFThe Wisconsin Rapids Wastewater Treatment Plant (WRWWTP) is faced with a more stringent effluent phosphorus requirement that will drive capital investment between 2020 and 2025. The facility will need to achieve a monthly average value of 0.36 mg L of total phosphorus (TP).
View Article and Find Full Text PDF