Publications by authors named "F S Rasulova"

The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.

View Article and Find Full Text PDF

Adhesion pili (fimbriae) play a critical role in initiating the events that lead to intestinal colonization and diarrheal disease by enterotoxigenic Escherichia coli (ETEC), an E. coli pathotype that inflicts an enormous global disease burden. We elucidate atomic structures of an ETEC major pilin subunit, CfaB, from colonization factor antigen I (CFA/I) fimbriae.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC), a major global cause of diarrhea, initiates the pathogenic process via fimbriae-mediated attachment to the small intestinal epithelium. A common prototypic ETEC fimbria, colonization factor antigen I (CFA/I), consists of a tip-localized minor adhesive subunit CfaE and the stalk-forming major subunit CfaB, both of which are necessary for fimbrial assembly. To elucidate the structure of CFA/I at atomic resolution, three recombinant proteins were generated consisting of fusions of the minor and major subunits (CfaEB) and of two (CfaBB) and three (CfaBBB) repeats of the major subunit.

View Article and Find Full Text PDF

CfaE is the minor, tip-localized adhesive subunit of colonization factor antigen I fimbriae (CFA/I) of enterotoxigenic Escherichia coli and is thought to be essential for the attachment of enterotoxigenic E. coli to the human small intestine early in diarrhea pathogenesis. The crystal structure of an in cis donor strand complemented CfaE was determined, providing the first atomic view of a fimbrial subunit assembled by the alternate chaperone pathway.

View Article and Find Full Text PDF

ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively.

View Article and Find Full Text PDF